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Judecoin is a leading cryptocurrency that focuses on private and censored transactions. The 

publicly verifiable nature of  most cryptography currencies allows anyone in the world to track 

your money. In addition, links between your financial records and your personal identity can 

compromise your security.  

To avoid this, judecoin uses powerful cryptography to create a network that allows parties to 

interact without revealing the sender, receiver or transaction amount. Like other cryptography 

currencies, judecoin has a distributed ledger that all participants can download and verify by 

themselves.  

However, judecoin uses a series of  mathematical techniques to hide all privacy details and prevent 

any blockchain tracking. Judecoin's privacy function allows the network to evaluate the validity of  

the transaction and determine whether the sender has enough account balance, but without 

actually knowing the transaction amount or account balance! No one can view other people's 

account balances, and the transaction cannot disclose the source of  the transferred funds.  

Users can enjoy the transparency and security of  the blockchain without taking all the risks of  the 

financial system.  
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1 PREFACE  
 

“Bitcoin” [1] has been a successful implementation of  the concept of  p2p electronic cash. 

Both professionals and the general public have come to appreciate the convenient combination of  

public transactions and proof-of-work as a trust model. Today, the user base of  electronic cash is 

growing at a steady pace; customers are attracted to low fees and the anonymity provided by 

electronic cash and merchants value its predicted and decentralized emission. Bitcoin has 

effectively proved that electronic cash can be as simple as paper money and as convenient as 

credit cards.  

Unfortunately, Bitcoin suffers from several deficiencies. For example, the system’s distributed 

nature is inflexible, preventing the implementation of  new features until almost all of  the network 

users update their clients. Some critical flaws that cannot be fixed rapidly deter Bitcoin’s 

widespread propagation. In such inflexible models, it is more efficient to roll-out a new project 

rather than perpetually fix the original project.  

In this paper, we study and propose solutions to the main deficiencies of  Bitcoin. We believe 

that a system taking into account the solutions we propose will lead to a healthy competition 

among different electronic cash systems. We also propose our own electronic cash, “CryptoNote”, 

a name emphasizing the next breakthrough in electronic cash.  
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2 BITCOIN DRAWBACKS AND SOME POSSIBLE SOLUTIONS  
 

2.1 TRACEABILITY OF TRANSACTIONS  
Privacy and anonymity are the most important aspects of  electronic cash. Peer-to-peer 

payments seek to be concealed from third party’s view, a distinct difference when compared with 

traditional banking. In particular, T. Okamoto and K. Ohta described six criteria of  ideal 

electronic cash, which included “privacy: relationship between the user and his purchases must be 

untraceable by anyone” [30]. From their description, we derived two properties which a fully 

anonymous electronic cash model must satisfy in order to comply with the requirements outlined 

by Okamoto and Ohta:  

Untraceability: for each incoming transaction all possible senders are equiprobable.  

Unlinkability: for any two outgoing transactions it is impossible to prove they were sent to 

the same person.  

Unfortunately, Bitcoin does not satisfy the untraceability requirement. Since all the 

transactions that take place between the network’s participants are public, any transaction can be 

unambiguously traced to a unique origin and final recipient. Even if  two participants exchange 

funds in an indirect way, a properly engineered path-finding method will reveal the origin and final 

recipient.  

It is also suspected that Bitcoin does not satisfy the second property. Some researchers stated 

([33, 35, 29, 31]) that a careful blockchain analysis may reveal a connection between the users of  

the Bitcoin network and their transactions. Although a number of  methods are disputed [25], it is 

suspected that a lot of  hidden personal information can be extracted from the public database.  

Bitcoin’s failure to satisfy the two properties outlined above leads us to conclude that it is not 

an anonymous but a pseudo-anonymous electronic cash system. Users were quick to develop 

solutions to circumvent this shortcoming. Two direct solutions were “laundering services” [2] and 

the development of  distributed methods [3, 4]. Both solutions are based on the idea of  mixing 

several public transactions and sending them through some intermediary address; which in turn 

suffers the drawback of  requiring a trusted third party.  

Recently, a more creative scheme was proposed by I. Miers et al. [28]: “Zerocoin”. Zerocoin 

utilizes a cryptographic one-way accumulators and zero-knoweldge proofs which permit users to 

“convert” bitcoins to zerocoins and spend them using anonymous proof  of  ownership instead of  

explicit public-key based digital signatures. However, such knowledge proofs have a constant but 

inconvenient size - about 30kb (based on today’s Bitcoin limits), which makes the proposal 

impractical. Authors admit that the protocol is unlikely to ever be accepted by the majority of  

Bitcoin users [5].  

2.2 THE PROOF-OF-WORK FUNCTION  
Bitcoin creator Satoshi Nakamoto described the majority decision making algorithm as 

“oneCPU-one-vote” and used a CPU-bound pricing function (double SHA-256) for his proof-
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ofwork scheme. Since users vote for the single history of  transactions order [1], the 

reasonableness and consistency of  this process are critical conditions for the whole system.  

The security of  this model suffers from two drawbacks. First, it requires 51% of  the 

network’s mining power to be under the control of  honest users. Secondly, the system’s progress 

(bug fixes, security fixes, etc...) require the overwhelming majority of  users to support and agree to 

the changes (this occurs when the users update their wallet software) [6].Finally this same voting 

mechanism is also used for collective polls about implementation of  some features [7].  

This permits us to conjecture the properties that must be satisfied by the proof-of-work 

pricing function. Such function must not enable a network participant to have a significant 

advantage over another participant; it requires a parity between common hardware and high cost 

of  custom devices. From recent examples [8], we can see that the SHA-256 function used in the 

Bitcoin architecture does not posses this property as mining becomes more efficient on GPUs 

and ASIC devices when compared to high-end CPUs.  

Therefore, Bitcoin creates favourable conditions for a large gap between the voting power of  

participants as it violates the “one-CPU-one-vote” principle since GPU and ASIC owners posses 

a much larger voting power when compared with CPU owners. It is a classical example of  the 

Pareto principle where 20% of  a system’s participants control more than 80% of  the votes.  

One could argue that such inequality is not relevant to the network’s security since it is not 

the small number of  participants controlling the majority of  the votes but the honesty of  these 

participants that matters. However, such argument is somewhat flawed since it is rather the 

possibility of  cheap specialized hardware appearing rather than the participants’ honesty which 

poses a threat. To demonstrate this, let us take the following example. Suppose a malevolent 

individual gains significant mining power by creating his own mining farm through the cheap 

hardware described previously. Suppose that the global hashrate decreases significantly, even for a 

moment, he can now use his mining power to fork the chain and double-spend. As we shall see 

later in this article, it is not unlikely for the previously described event to take place.  

2.3 IRREGULAR EMISSION  
Bitcoin has a predetermined emission rate: each solved block produces a fixed amount of  

coins. Approximately every four years this reward is halved. The original intention was to create a 

limited smooth emission with exponential decay, but in fact we have a piecewise linear emission 

function whose breakpoints may cause problems to the Bitcoin infrastructure.  

When the breakpoint occurs, miners start to receive only half  of  the value of  their previous 

reward. The absolute difference between 12.5 and 6.25 BTC (projected for the year 2020) may 

seem tolerable. However, when examining the 50 to 25 BTC drop that took place on November 

28 2012, felt inappropriate for a significant number of  members of  the mining community. Figure 

1 shows a dramatic decrease in the network’s hashrate in the end of  November, exactly when the 

halving took place. This event could have been the perfect moment for the malevolent individual 

described in the proof-of-work function section to carry-out a double spending attack [36].  
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Fig. 1. Bitcoin hashrate chart  

(source: http://bitcoin.sipa.be)  

2.4 HARDCODED CONSTANTS  
Bitcoin has many hard-coded limits, where some are natural elements of  the original design 

(e.g. block frequency, maximum amount of  money supply, number of  confirmations) whereas 

other seem to be artificial constraints. It is not so much the limits, as the inability of  quickly 

changing them if  necessary that causes the main drawbacks. Unfortunately, it is hard to predict 

when the constants may need to be changed and replacing them may lead to terrible 

consequences.  

A good example of  a hardcoded limit change leading to disastrous consequences is the block 

size limit set to 250kb1. This limit was sufficient to hold about 10000 standard transactions. In 

early 2013, this limit had almost been reached and an agreement was reached to increase the limit. 

The change was implemented in wallet version 0.8 and ended with a 24-blocks chain split and a 

successful double-spend attack [9]. While the bug was not in the Bitcoin protocol, but rather in 

the database engine it could have been easily caught by a simple stress test if  there was no 

artificially introduced block size limit.  

  
Constants also act as a form of  centralization point. Despite the peer-to-peer nature of  

Bitcoin, an overwhelming majority of  nodes use the official reference client [10] developed by a 

small group of  people. This group makes the decision to implement changes to the protocol and 

most people accept these changes irrespective of  their “correctness”. Some decisions caused 

 
1 This is so-called “soft limit” — the reference client restriction for creating new blocks. Hard maximum of possible blocksize 

was 1 MB  
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heated discussions and even calls for boycott [11], which indicates that the community and the 

developers may disagree on some important points. It therefore seems logical to have a protocol 

with user-configurable and self-adjusting variables as a possible way to avoid these problems.  

2.5 BULKY SCRIPTS  
The scripting system in Bitcoin is a heavy and complex feature. It potentially allows one to 

create sophisticated transactions [12], but some of  its features are disabled due to security 

concerns and some have never even been used [13]. The script (including both senders’ and 

receivers’ parts) for the most popular transaction in Bitcoin looks like this:  

<sig> <pubKey> OP DUP OP HASH160 <pubKeyHash> OP EQUALVERIFY OP CHECKSIG.  

The script is 164 bytes long whereas its only purpose is to check if  the receiver possess the 

secret key required to verify his signature.  

3 THE CRYPTONOTE TECHNOLOGY  
 

Now that we have covered the limitations of  the Bitcoin technology, we will concentrate on 

presenting the features of  CryptoNote.  

4 UNTRACEABLE TRANSACTIONS  
 

In this section we propose a scheme of  fully anonymous transactions satisfying both 

untraceability and unlinkability conditions. An important feature of  our solution is its autonomy:  

the sender is not required to cooperate with other users or a trusted third party to make his 

transactions; hence each participant produces a cover traffic independently.  

4.1 LITERATURE REVIEW  
Our scheme relies on the cryptographic primitive called a group signature. First presented by D. 

Chaum and E. van Heyst [19], it allows a user to sign his message on behalf  of  the group.  

After signing the message the user provides (for verification purposes) not his own single 
public key, but the keys of  all the users of  his group. A verifier is convinced that the real signer is 

a member of  the group, but cannot exclusively identify the signer.  

The original protocol required a trusted third party (called the Group Manager), and he was 

the only one who could trace the signer. The next version called a ring signature, introduced by 

Rivest et al. in [34], was an autonomous scheme without Group Manager and anonymity 

revocation. Various modifications of  this scheme appeared later: linkable ring signature [26, 27, 17] 

allowed to determine if  two signatures were produced by the same group member, traceable ring 
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signature [24, 23] limited excessive anonymity by providing possibility to trace the signer of  two 

messages with respect to the same metainformation (or “tag” in terms of  [24]).  

A similar cryptographic construction is also known as a ad-hoc group signature [16, 38]. It 

emphasizes the arbitrary group formation, whereas group/ring signature schemes rather imply a 

fixed set of  members.  

For the most part, our solution is based on the work “Traceable ring signature” by E. 

Fujisaki and K. Suzuki [24]. In order to distinguish the original algorithm and our modification we 

will call the latter a one-time ring signature, stressing the user’s capability to produce only one valid 

signature under his private key. We weakened the traceability property and kept the linkability only 

to provide one-timeness: the public key may appear in many foreign verifying sets and the private 

key can be used for generating a unique anonymous signature. In case of  a double spend attempt 

these two signatures will be linked together, but revealing the signer is not necessary for our 

purposes.  

4.2 DEFINITIONS  

 Elliptic curve parameters  

As our base signature algorithm we chose to use the fast scheme EdDSA, which is 

developed and implemented by D.J. Bernstein et al. [18]. Like Bitcoin’s ECDSA it is based on the 

elliptic curve discrete logarithm problem, so our scheme could also be applied to Bitcoin in future. 

Common parameters are:  

q: a prime number; q = 2255 − 19; d:  

an element of  Fq; d = −121665/121666;  

E: an elliptic curve equation; −x2 + y2 = 1 + dx2y2; G: a base point; G = (x,−4/5); l: a  

prime order of  the base point; l = 2252 + 27742317777372353535851937790883648493;  

Hs: a cryptographic hash function {0,1}∗ → Fq;  

Hp: a deterministic hash function E(Fq) → E(Fq).  

 Terminology  

Enhanced privacy requires a new terminology which should not be confused with Bitcoin 

entities.  

private ec-key is a standard elliptic curve private key: a number a ∈ [1,l −  

1]; public ec-key is a standard elliptic curve public key: a point A = aG; one-time 

keypair is a pair of  private and public ec-keys; private user key is a pair (a,b) of  two 
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different private ec-keys; tracking key is a pair (a,B) of  private and public ec-key 

(where B = bG and a 6= b); public user key is a pair (A,B) of  two public ec-keys 

derived from (a,b);  

standard address is a representation of  a public user key given into human friendly  

string with error correction;  

truncated address is a representation of  the second half  (point B) of  a public user key  

given into human friendly string with error correction.  

The transaction structure remains similar to the structure in Bitcoin: every user can choose 

several independent incoming payments (transactions outputs), sign them with the corresponding 

private keys and send them to different destinations.  

Contrary to Bitcoin’s model, where a user possesses unique private and public key, in the 

proposed model a sender generates a one-time public key based on the recipient’s address and 

some RandomJDX data. In this sense, an incoming transaction for the same recipient is sent to a 

onetime public key (not directly to a unique address) and only the recipient can recover the 

corresponding private part to redeem his funds (using his unique private key). The recipient can 

spend the funds using a ring signature, keeping his ownership and actual spending anonymous. 

The details of  the protocol are explained in the next subsections.  

4.3 UNLINKABLE PAYMENTS  
Classic Bitcoin addresses, once being published, become unambiguous identifier for 

incoming payments, linking them together and tying to the recipient’s pseudonyms. If  someone 

wants to receive an “untied” transaction, he should convey his address to the sender by a private 

channel. If  he wants to receive different transactions which cannot be proven to belong to the 

same owner he should generate all the different addresses and never publish them in his own 

pseudonym.  

 

Fig. 2. Traditional Bitcoin keys/transactions model.  

We propose a solution allowing a user to publish a single address and receive unconditional 

unlinkable payments. The destination of  each CryptoNote output (by default) is a public key, 

derived from recipient’s address and sender’s RandomJDX data. The main advantage against 

Bitcoin is that every destination key is unique by default (unless the sender uses the same data for 

each of  his transactions to the same recipient). Hence, there is no such issue as “address reuse” by 

design and no observer can determine if  any transactions were sent to a specific address or link 

two addresses together.  
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Fig. 3. CryptoNote keys/transactions model.  

First, the sender performs a Diffie-Hellman exchange to get a shared secret from his data 

and half  of  the recipient’s address. Then he computes a one-time destination key, using the shared 

secret and the second half  of  the address. Two different ec-keys are required from the recipient 

for these two steps, so a standard CryptoNote address is nearly twice as large as a Bitcoin wallet 

address. The receiver also performs a Diffie-Hellman exchange to recover the corresponding 

secret key.  

A standard transaction sequence goes as follows:  

1. Alice wants to send a payment to Bob, who has published his standard address. She 

unpacks the address and gets Bob’s public key (A,B).  

2. Alice generates a RandomJDX r ∈ [1,l−1] and computes a one-time public key P 

=  

Hs(rA)G+ B.  

3. Alice uses P as a destination key for the output and also packs value R = rG (as a 

part of  the Diffie-Hellman exchange) somewhere into the transaction. Note that she can 

create other outputs with unique public keys: different recipients’ keys (Ai,Bi) imply 

different Pi even with the same r.  

 

Fig. 4. Standard transaction structure.  

4. Alice sends the transaction.  
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5. Bob checks every passing transaction with his private key (a,b), and computes P0 = 

Hs(aR)G + B. If  Alice’s transaction for with Bob as the recipient was among them, then aR 

= arG = rA and P0 = P.  

6. Bob can recover the corresponding one-time private key: x = Hs(aR) + b, so as P = 

xG. He can spend this output at any time by signing a transaction with x.  

 

Fig. 5. Incoming transaction check.  

As a result Bob gets incoming payments, associated with one-time public keys which are 

unlinkable for a spectator. Some additional notes:  

• When Bob “recognizes” his transactions (see step 5) he practically uses only half  

of  his private information: (a,B). This pair, also known as the tracking key, can be passed 

to a third party (Carol). Bob can delegate her the processing of  new transactions. Bob 

doesn’t need to explicitly trust Carol, because she can’t recover the one-time secret key p 

without Bob’s full private key (a,b). This approach is useful when Bob lacks bandwidth or 

computation power (smartphones, hardware wallets etc.).  

• In case Alice wants to prove she sent a transaction to Bob’s address she can either 

disclose r or use any kind of  zero-knowledge protocol to prove she knows r (for example by 
signing the transaction with r).  

• If  Bob wants to have an audit compatible address where all incoming transaction 

are linkable, he can either publish his tracking key or use a truncated address. That address 

represent only one public ec-key B, and the remaining part required by the protocol is 

derived from it as follows: a = Hs(B) and A = Hs(B)G. In both cases every person is able to 

“recognize” all of  Bob’s incoming transaction, but, of  course, none can spend the funds 

enclosed within them without the secret key b.  

4.4 ONE-TIME RING SIGNATURES  
A protocol based on one-time ring signatures allows users to achieve unconditional 

unlinkability. Unfortunately, ordinary types of  cryptographic signatures permit to trace 

transactions to their respective senders and receivers. Our solution to this deficiency lies in using a 

different signature type than those currently used in electronic cash systems.  

We will first provide a general description of  our algorithm with no explicit reference to 

electronic cash.  

A one-time ring signature contains four algorithms: (GEN, SIG, VER, LNK):  
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GEN: takes public parameters and outputs an ec-pair (P,x) and a public key I.  

SIG: takes a message m, a set S0 of  public keys {Pi}i6=s, a pair (Ps,xs) and outputs a 

signature σ and a set S = S0 ∪ {Ps}.  

VER: takes a message m, a set S, a signature σ and outputs “true” or “false”.  

LNK: takes a set I = {Ii}, a signature σ and outputs “linked” or “indep”.  

The idea behind the protocol is fairly simple: a user produces a signature which can be 

checked by a set of  public keys rather than a unique public key. The identity of  the signer is 

indistinguishable from the other users whose public keys are in the set until the owner produces a 

second signature using the same keypair.  

 

Fig. 6. Ring signature anonymity.  

GEN: The signer picks a RandomJDX secret key x ∈ [1,l − 1] and computes the 

corresponding public key P = xG. Additionally he computes another public key I = xHp(P) which 
we will call the “key image”.  

SIG: The signer generates a one-time ring signature with a non-interactive zero-knowledge 

proof  using the techniques from [21]. He selects a RandomJDX subset S0 of  n from the other 

users’ public keys Pi, his own keypair (x,P) and key image I. Let 0 ≤ s ≤ n be signer’s secret index 

in S (so that his public key is Ps).  

He picks a RandomJDX {qi | i = 0...n} and {wi | i = 0...n,i 6= s} from (1...l) and applies the 

following transformations:  

   qiG + wiPi,  if   

( qiHp(Pi),if  i = s 

Ri =  

   qiHp(Pi) + wiI,  if  i 6= s  

The next step is getting the non-interactive challenge:  

c = Hs(m,L1,...,Ln,R1,...,Rn) Finally the signer computes the  

response:  

 (  

  

Privatekeys   

Publickeys   

R 
Signature   s 

ver 
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   qi,  if  i 6= s  

 ri = qs − csx  mod l, 

 if  i = s  

The resulting signature is σ = (I,c1,...,cn,r1,...,rn).  

VER: The verifier checks the signature by applying the inverse transformations:  

(L0i = riG + ciPi  

Ri0 = riHp(Pi) + ciI n  

Finally, the verifier checks if  P ci =? Hs(m,L0
0,...,L0

n,R0
0 ,...,Rn

0 ) mod l  
i=0  

If  this equality is correct, the verifier runs the algorithm LNK. Otherwise the verifier rejects 

the signature.  

LNK: The verifier checks if  I has been used in past signatures (these values are stored in the 

set I). Multiple uses imply that two signatures were produced under the same secret key.  

The meaning of  the protocol: by applying L-transformations the signer proves that he 

knows such x that at least one Pi = xG. To make this proof  non-repeatable we introduce the key 

image as I = xHp(P). The signer uses the same coefficients (ri,ci) to prove almost the same 

statement:  

he knows such x that at least one Hp(Pi) = 

I · x−1. If  the mapping x → I is an injection:  

1. Nobody can recover the public key from the key image and identify the signer;  

2. The signer cannot make two signatures with different I’s and the same x.  

A full security analysis is provided in Appendix A.  

4.5 STANDARD CRYPTONOTE TRANSACTION  
By combining both methods (unlinkable public keys and untraceable ring signature) Bob 

achieves new level of  privacy in comparison with the original Bitcoin scheme. It requires him to 

store only one private key (a,b) and publish (A,B) to start receiving and sending anonymous 

transactions.  

While validating each transaction Bob additionally performs only two elliptic curve 

multiplications and one addition per output to check if  a transaction belongs to him. For his every 

output Bob recovers a one-time keypair (pi,Pi) and stores it in his wallet. Any inputs can be 

circumstantially proved to have the same owner only if  they appear in a single transaction. In fact this 

relationship is much harder to establish due to the one-time ring signature.  

With a ring signature Bob can effectively hide every input among somebody else’s; all 

possible spenders will be equiprobable, even the previous owner (Alice) has no more information 

than any observer.  
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When signing his transaction Bob specifies n foreign outputs with the same amount as his 

output, mixing all of  them without the participation of  other users. Bob himself  (as well as 

anybody else) does not know if  any of  these payments have been spent: an output can be used in 

thousands of  signatures as an ambiguity factor and never as a target of  hiding. The double spend 

check occurs in the LNK phase when checking against the used key images set.  

Bob can choose the ambiguity degree on his own: n = 1 means that the probability he has 

spent the output is 50% probability, n = 99 gives 1%. The size of  the resulting signature increases 

linearly as O(n+1), so the improved anonymity costs to Bob extra transaction fees. He also can set 

n = 0 and make his ring signature to consist of  only one element, however this will instantly reveal 

him as a spender.  

 

Fig. 7. Ring signature generation in a standard transaction.  

5 EGALITARIAN PROOF-OF-WORK  
 

In this section we propose and ground the new proof-of-work algorithm. Our primary goal 

is to close the gap between CPU (majority) and GPU/FPGA/ASIC (minority) miners. It is 

appropriate that some users can have a certain advantage over others, but their investments 

should grow at least linearly with the power. More generally, producing special-purpose devices 

has to be as less profitable as possible.  

5.1 RELATED WORKS  
The original Bitcoin proof-of-work protocol uses the CPU-intensive pricing function 

SHA256. It mainly consists of  basic logical operators and relies solely on the computational speed 

of  processor, therefore is perfectly suitable for multicore/conveyer implementation.  
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However, modern computers are not limited by the number of  operations per second alone, 

but also by memory size. While some processors can be substantially faster than others [8], 

memory sizes are less likely to vary between machines.  

Memory-bound price functions were first introduced by Abadi et al and were defined as 

“functions whose computation time is dominated by the time spent accessing memory” [15]. The 

main idea is to construct an algorithm allocating a large block of  data (“scratchpad”) within 

memory that can be accessed relatively slowly (for example, RAM) and “accessing an 

unpredictable sequence of  locations” within it. A block should be large enough to make 

preserving the data more advantageous than recomputing it for each access. The algorithm also 

should prevent internal parallelism, hence N simultaneous threads should require N times more 

memory at once.  

Dwork et al [22] investigated and formalized this approach leading them to suggest another 

variant of  the pricing function: “Mbound”. One more work belongs to F. Coelho [20], who 

proposed the most effective solution: “Hokkaido”.  

To our knowledge the last work based on the idea of  pseudo-RandomJDX searches in a big 

array is the algorithm known as “scrypt” by C. Percival [32]. Unlike the previous functions it 

focuses on key derivation, and not proof-of-work systems. Despite this fact scrypt can serve our 

purpose: it works well as a pricing function in the partial hash conversion problem such as SHA-

256 in  

Bitcoin.  

By now scrypt has already been applied in Litecoin [14] and some other Bitcoin forks. 

However, its implementation is not really memory-bound: the ratio “memory access time / overall 

time” is not large enough because each instance uses only 128 KB. This permits GPU miners to 

be roughly 10 times more effective and continues to leave the possibility of  creating relatively 

cheap but highly-efficient mining devices.  

Moreover, the scrypt construction itself  allows a linear trade-off  between memory size and 

CPU speed due to the fact that every block in the scratchpad is derived only from the previous. 

For example, you can store every second block and recalculate the others in a lazy way, i.e. only 

when it becomes necessary. The pseudo-RandomJDX indexes are assumed to be uniformly 

distributed, hence the expected value of  the additional blocks’ recalculations is , where N is 

the number of  iterations. The overall computation time increases less than by half  because there 

are also time independent (constant time) operations such as preparing the scratchpad and 

hashing on every iteration. Saving 2/3 of  the memory costs 
1

3
∙ 𝑁 +

1

3
∙ 2 ∙ 𝑁 = 𝑁  additional 

recalculations; 9/10 results in
1

10
∙ 𝑁 + ⋯ +

1

10
∙ 9 ∙ 𝑁 = 4.5𝑁  . It is easy to show that storing 

only  of  all blocks  

increases the time less than by a factor of  
𝑆−1

2
 . This in turn implies that a machine with a CPU 

200 times faster than the modern chips can store only 320 bytes of  the scratchpad.  

5.2 THE PROPOSED ALGORITHM  
We propose a new memory-bound algorithm for the proof-of-work pricing function. It relies 

on RandomJDX access to a slow memory and emphasizes latency dependence. As opposed to 
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scrypt every new block (64 bytes in length) depends on all the previous blocks. As a result a 

hypothetical “memory-saver” should increase his calculation speed exponentially.  

Our algorithm requires about 2 Mb per instance for the following reasons:  

1. It fits in the L3 cache (per core) of  modern processors, which should become 

mainstream in a few years;  

2. A megabyte of  internal memory is an almost unacceptable size for a modern ASIC 

pipeline;  

3. GPUs may run hundreds of  concurrent instances, but they are limited in other 

ways: GDDR5 memory is slower than the CPU L3 cache and remarkable for its bandwidth, 

not RandomJDX access speed.  

4. Significant expansion of  the scratchpad would require an increase in iterations, 

which in turn implies an overall time increase. “Heavy” calls in a trust-less p2p network may 

lead to serious vulnerabilities, because nodes are obliged to check every new block’s 

proofof-work. If  a node spends a considerable amount of  time on each hash evaluation, it 

can be easily DDoSed by a flood of  fake objects with arbitrary work data (nonce values).  

 

6 FURTHER ADVANTAGES  
 

6.1 SMOOTH EMISSION   
The upper bound for the overall amount of  CryptoNote digital coins is: MSupply = 8.7 ∗ 1016 ∕ 

109 jude units. This is a natural restriction based only on implementation limits, not on intuition 

such as “N coins ought to be enough for anybody”.  

To ensure the smoothness of  the emission process we use the following formula for block 

rewards:  

BaseReward = 120⁄𝑐𝑒𝑖𝑙(𝐴⁄365462) ∗ 109,  

where A is amount of  previously generated blocks.  

6.2 ADJUSTABLE PARAMETERS  

 Difficulty  

CryptoNote contains a targeting algorithm which changes the difficulty of  every block. This 

decreases the system’s reaction time when the network hashrate is intensely growing or shrinking, 

preserving a constant block rate. The original Bitcoin method calculates the relation of  actual and 

target time-span between the last 2016 blocks and uses it as the multiplier for the current 
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difficulty. Obviously this is unsuitable for rapid recalculations (because of  large inertia) and results 

in oscillations.  

The general idea behind our algorithm is to sum all the work completed by the nodes and 

divide it by the time they have spent. The measure of  work is the corresponding difficulty values 

in each block. But due to inaccurate and untrusted timestamps we cannot determine the exact 

time interval between blocks. A user can shift his timestamp into the future and the next time 

intervals might be improbably small or even negative. Presumably there will be few incidents of  

this kind, so we can just sort the timestamps and cut-off  the outliers (i.e. 20%). The range of  the 

rest values is the time which was spent for 80% of  the corresponding blocks.  

 Size limits  

Users pay for storing the blockchain and shall be entitled to vote for its size. Every miner 

deals with the trade-off  between balancing the costs and profit from the fees and sets his own 

“soft-limit” for creating blocks. Also the core rule for the maximum block size is necessary for 

preventing the blockchain from being flooded with bogus transaction, however this value should 

not be hard-coded.  

Let MN be the median value of  the last N blocks sizes. Then the “hard-limit” for the size of  

accepting blocks is 2 · MN. It averts the blockchain from bloating but still allows the limit to 

slowly grow with time if  necessary.  

Transaction size does not need to be limited explicitly. It is bounded by the size of  a block; 

and if  somebody wants to create a huge transaction with hundreds of  inputs/outputs (or with the 

high ambiguity degree in ring signatures), he can do so by paying sufficient fee.  

 Excess size penalty  

A miner still has the ability to stuff  a block full of  his own zero-fee transactions up to its 

maximum size 2 · Mb. Even though only the majority of  miners can shift the median value, there 

is still a possibility to bloat the blockchain and produce an additional load on the nodes. To 

discourage malevolent participants from creating large blocks we introduce a penalty function:  

NewReward = BaseReward   

This rule is applied only when BlkSize is greater than minimal free block size which should 

be close to max(10kb,MN ·110%). Miners are permitted to create blocks of  “usual size” and even 

exceed it with profit when the overall fees surpass the penalty. But fees are unlikely to grow 

quadratically unlike the penalty value so there will be an equilibrium.  

6.3 TRANSACTION SCRIPTS  
CryptoNote has a very minimalistic scripting subsystem. A sender specifies an expression Φ 

= f  (x1,x2,...,xn), where n is the number of  destination public keys . Only five binary 

operators are supported: min, max, sum, mul and cmp. When the receiver spends this payment, 

he produces 0 ≤ k ≤ n signatures and passes them to transaction input. The verification process 

simply evaluates Φ with xi = 1 to check for a valid signature for the public key Pi, and xi = 0.  

A verifier accepts the proof  iff  Φ > 0.  

Despite its simplicity this approach covers every possible case:  
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 •  Multi-/Threshold signature. For the Bitcoin-style “M-out-of-N” multi-signature  

(i.e. the receiver should provide at least 0 ≤ M ≤ N valid signatures) Φ = x1+x2+...+xN ≥ M  

(for clarity we are using common algebraic notation). The weighted threshold signature  

(some keys can be more important than other) could be expressed as Φ = w1 · x1 + w2 · x2 

+ ... + wN · xN ≥ wM. And scenario where the master-key corresponds to Φ = max(M · x,x1 

+ x2 + ... + xN) ≥ M. It is easy to show that any sophisticated case can be expressed with 

these operators, i.e. they form basis.  

• Password protection. Possession of  a secret password s is equivalent to the 

knowledge of  a private key, deterministically derived from the password: k = KDF(s). Hence, 

a receiver can prove that he knows the password by providing another signature under the 

key k. The sender simply adds the corresponding public key to his own output. Note that 

this method is much more secure than the “transaction puzzle” used in Bitcoin [13], where 

the password is explicitly passed in the inputs.  

• Degenerate cases. Φ = 1 means that anybody can spend the money; Φ = 0 marks 

the output as not spendable forever.  

In the case when the output script combined with public keys is too large for a sender, he 

can use special output type, which indicates that the recipient will put this data in his input while 

the sender provides only a hash of  it. This approach is similar to Bitcoin’s “pay-to-hash” feature, 

but instead of  adding new script commands we handle this case at the data structure level.  

6.4 AN EFFICIENT IMPLEMENTATION OF JUDECOIN SUBADDRESSES  
Users of  the judecoin cryptocurrency who wish to reuse wallet addresses in an unlinkable way must 

maintain separate wallets, which necessitates scanning incoming transactions for each one. We 

document a new address scheme that allows a user to maintain a single master wallet address and 

generate an arbitrary number of  unlinkable subaddresses. Each transaction needs to be scanned only 

once to determine if  it is destinated for any of  the user’s subaddresses. The scheme additionally 

supports multiple outputs to other subaddresses, and is as efficient as traditional wallet transactions.  

6.5 DUAL LINKABLE RING SIGNATURES  
  

This bulletin describes a modification to judecoin's linkable ring signature scheme that permits dualkey 

outputs as ring members. Key images are tied to both output one-time public keys in a dual, 

preventing both keys in that transaction from being spent separately. This method has applications to 

non-interactive refund transactions. We discuss the security implications of  the scheme.  

6.6 CONCISE LINKABLE RING SIGNATURES AND FORGERY AGAINST 

ADVERSARIAL KEYS  
We demonstrate that a version of  non-slanderability is a natural definition of  unforgeability for 

linkable ring signatures. We present a linkable ring signature construction with concise signatures and 

multi-dimensional keys that is linkably anonymous if  a variation of  the decisional Diffie-Hellman 

problem with RandomJDX oracles is hard, linkable if  key aggregation is a one-way function, and 
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nonslanderable if  a one-more variation of  the discrete logarithm problem is hard. We remark on some 

applications in signer-ambiguous confidential transaction models without trusted setup.  

7 RANDOM JDX DESIGN  
 

To minimize the performance advantage of  specialized hardware, a proof  of  work (PoW) 

algorithm must achieve device binding by targeting specific features of  existing general-purpose 

hardware. This is a complex task because we have to target a large class of  devices with 

different architectures from different manufacturers.  

There are two distinct classes of  general processing devices: central processing units (CPUs) 

and graphics processing units (GPUs). Random JDX targets CPUs for the following reasons:  

• CPUs, being less specialized devices, are more prevalent and widely accessible. A CPU-bound 

algorithm is more egalitarian and allows more participants to join the network. This is one of  

the goals stated in the original CryptoNote whitepaper [1].   

• A large common subset of  native hardware instructions exists among different CPU 

architectures. The same cannot be said about GPUs. For example, there is no common 
integer multiplication instruction for NVIDIA and AMD GPUs [2].  

• All major CPU instruction sets are well documented with multiple open source compilers 

available. In comparison, GPU instruction sets are usually proprietary and may require vendor 

specific closed-source drivers for maximum performance.  

7.1  DESIGN CONSIDERATIONS  

The most basic idea of  a CPU-bound proof  of  work is that the "work" must be dynamic. 

This takes advantage of  the fact that CPUs accept two kinds of  inputs: data (the main input) 

and code (which specifies what to perform with the data).  

Conversely, typical cryptographic hashing functions [3] do not represent suitable work for the 

CPU because their only input is data, while the sequence of  operations is fixed and can be 

performed more efficiently by a specialized integrated circuit.  

  Dynamic proof  of  work  

A dynamic proof  of  work algorithm can generally consist of  the following 4 steps:  

1) Generate a RandomJDX program.  

2) Translate it into the native machine code of  the CPU.  

3) Execute the program.  

4) Transform the output of  the program into a cryptographically secure value.  

The actual 'useful' CPU-bound work is performed in step 3, so the algorithm must be tuned 

to minimize the overhead of  the remaining steps.  

7.1.1.1  Generating a RandomJDX program  

https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://github.com/ifdefelse/ProgPOW/issues/16
https://github.com/ifdefelse/ProgPOW/issues/16
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
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Early attempts at a dynamic proof  of  work design were based on generating a program in a 

high-level language, such as C or Javascript [4, 5]. However, this is very inefficient for two 

main reasons:  

• High level languages have a complex syntax, so generating a valid program is relatively 

slow since it requires the creation of  an abstract syntax tree (ASL).  

• Once the source code of  the program is generated, the compiler will generally parse the 
textual representation back into the ASL, which makes the whole process of  generating 

source code redundant.  

The fastest way to generate a RandomJDX program is to use a logic-less generator - simply 

filling a buffer with RandomJDX data. This of  course requires designing a syntaxless 

programming language (or instruction set) in which all RandomJDX bit strings represent 

valid programs.  

7.1.1.2  Translating the program into machine code  

This step is inevitable because we don't want to limit the algorithm to a specific CPU 

architecture. In order to generate machine code as fast as possible, we need our instruction 

set to be as close to native hardware as possible, while still generic enough to support 

different architectures. There is not enough time for expensive optimizations during code 

compilation.  

7.1.1.3  Executing the program  

The actual program execution should utilize as many CPU components as possible. Some of  

the features that should be utilized in the program are:  

• multi-level caches (L1, L2, L3)  

• μop cache [6]  

• arithmetic logic unit (ALU)  

• floating point unit (FPU)  

• memory controller  

• instruction level parallelism [7]  

– superscalar execution [8]  

– out-of-order execution [9]  

– speculative execution [10]  

– register renaming [11]  

Chapter 2 describes how the Random JDX VM takes advantages of  these features.  

https://github.com/hyc/randprog
https://github.com/hyc/randprog
https://github.com/tevador/RandomJS
https://github.com/tevador/RandomJS
https://github.com/tevador/RandomJS
https://en.wikipedia.org/wiki/CPU_cache#Micro-operation_(%CE%BCop_or_uop)_cache
https://en.wikipedia.org/wiki/CPU_cache#Micro-operation_(%CE%BCop_or_uop)_cache
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Superscalar_processor
https://en.wikipedia.org/wiki/Superscalar_processor
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Speculative_execution
https://en.wikipedia.org/wiki/Speculative_execution
https://en.wikipedia.org/wiki/Register_renaming
https://en.wikipedia.org/wiki/Register_renaming
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7.1.1.4  Calculating the final result  

Blake2b [12] is a cryptographically secure hashing function that was specifically designed to be 

fast in software, especially on modern 64-bit processors, where it's around three times faster 

than SHA-3 and can run at a speed of  around 3 clock cycles per byte of  input. This function 

is an ideal candidate to be used in a CPU-friendly proof  of  work.  

For processing larger amounts of  data in a cryptographically secure way, the Advanced 

Encryption Standard (AES) [13] can provide the fastest processing speed because many 

modern CPUs support hardware acceleration of  these operations. See chapter 3 for more 

details about the use of  AES in Random JDX.  

  The "Easy program problem"  

When a RandomJDX program is generated, one may choose to execute it only when it's 

favorable. This strategy is viable for two main reasons:  

1. The runtime of  RandomJDXly generated programs typically follows a log-normal 

distribution [14] (also see Appendix C). A generated program may be quickly analyzed and if  

it's likely to have above-average runtime, program execution may be skipped and a new 

program may be generated instead. This can significantly boost performance especially in case 

the runtime distribution has a heavy tail (many long-running outliers) and if  program 

generation is cheap.  

2. An implementation may choose to optimize for a subset of  the features required for program 

execution. For example, the support for some operations (such as division) may be dropped 

or some instruction sequences may be implemented more efficiently. Generated programs 

would then be analyzed and be executed only if  they match the specific requirements of  the 

optimized implementation.  

These strategies of  searching for programs of  particular properties deviate from the 

objectives of  this proof  of  work, so they must be eliminated. This can be achieved by 

requiring a sequence of  N RandomJDX programs to be executed such that each program is 

generated from the output of  the previous one. The output of  the final program is then used 

as the result.  

          +---------------+     +---------------+               +------- 

--------+     +---------------+  

          |               |     |               |               |        

        |     |               |  

input --> |   program 1   | --> |   program 2   | -->  ...  --> | progra 
m (N-1) | --> |   program N   | --> result  

          |               |     |               |               |        

        |     |               |  

          +---------------+     +---------------+               +------- 

--------+     +---------------+  

The principle is that after the first program is executed, a miner has to either commit to 

finishing the whole chain (which may include unfavorable programs) or start over and waste 

https://blake2.net/
https://blake2.net/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Log-normal_distribution
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the effort expended on the unfinished chain. Examples of  how this affects the hashrate of  

different mining strategies are given in Appendix A.  

Additionally, this chained program execution has the benefit of  equalizing the runtime for the 

whole chain since the relative deviation of  a sum of  identically distributed runtimes is 

decreased.  

  Verification time  

Since the purpose of  the proof  of  work is to be used in a trustless peer-to-peer network, 

network participants must be able to quickly verify if  a proof  is valid or not. This puts an 

upper bound on the complexity of  the proof  of  work algorithm. In particular, we set a goal 

for Random JDX to be at least as fast to verify as the CryptoNight hash function [15], which 

it aims to replace.  

  Memory-hardness  

Besides pure computational resources, such as ALUs and FPUs, CPUs usually have access to 

a large amount of  memory in the form of  DRAM [16]. The performance of  the memory 
subsystem is typically tuned to match the compute capabilities, for example [17]:  

• single channel memory for embedded and low power CPUs  

• dual channel memory for desktop CPUs   

• triple or quad channel memory for workstation CPUs  

• six or eight channel memory for high-end server CPUs  

In order to utilize the external memory as well as the on-chip memory controllers, the proof  

of  work algorithm should access a large memory buffer (called the "Dataset"). The Dataset 

must be:  

1. larger than what can be stored on-chip (to require external memory)  

2. dynamic (to require writable memory)  

The maximum amount of  SRAM that can be put on a single chip is more than 512 MiB for a 

16 nm process and more than 2 GiB for a 7 nm process [18]. Ideally, the size of  the Dataset 

should be at least 4 GiB. However, due to constraints on the verification time (see below), the 

size used by Random JDX was selected to be 2080 MiB. While a single chip can theoretically 

be made with this amount of  SRAM using current technology (7 nm in 2019), the feasibility 

of  such solution is questionable, at least in the near future.  

7.1.4.1  Light-client verification  

While it's reasonable to require >2 GiB for dedicated mining systems that solve the proof  of  

work, an option must be provided for light clients to verify the proof  using a much lower 

amount of  memory.  

https://cryptonote.org/cns/cns008.txt
https://cryptonote.org/cns/cns008.txt
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Multi-channel_memory_architecture
https://en.wikipedia.org/wiki/Multi-channel_memory_architecture
https://www.grin-forum.org/t/obelisk-grn1-chip-details/4571
https://www.grin-forum.org/t/obelisk-grn1-chip-details/4571
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The ratio of  memory required for the 'fast' and 'light' modes must be chosen carefully not to 

make the light mode viable for mining. In particular, the area-time (AT) product of  the light 

mode should not be smaller than the AT product of  the fast mode. Reduction of  the AT 

product is a common way of  measuring tradeoff  attacks [19].  

Given the constraints described in the previous chapters, the maximum possible performance 

ratio between the fast and the light verification modes was empirically determined to be 8. 

This is because:  

1. Further increase of  the light verification time would violate the constraints set out in chapter 

1.3.  

2. Further decrease of  the fast mode runtime would violate the constraints set out in chapter 

1.1, in particular the overhead time of  program generation and result calculation would 

become too high.  

Additionally, 256 MiB was selected as the maximum amount of  memory that can be required 

in the light-client mode. This amount is acceptable even for small single-board computers 

such as the Raspberry Pi.  

To keep a constant memory-time product, the maximum fast-mode memory requirement is:  

8 * 256 MiB = 2048 MiB  

This can be further increased since the light mode requires additional chip area for the 

SuperscalarHash function (see chapter 3.4 and chapter 6 of  the Specification). Assuming a 

conservative estimate of  0.2 mm2 per SuperscalarHash core and DRAM density of  0.149 

Gb/mm2 [20], the additional memory is:  

8 * 0.2 * 0.149 * 1024 / 8 = 30.5 MiB  

or 32 MiB when rounded to the nearest power of  2. The total memory requirement of  the 

fast mode can be 2080 MiB with a roughly constant AT product.  

7.2  VIRTUAL MACHINE ARCHITECTURE  

This section describes the design of  the Random JDX virtual machine (VM).  

  Instruction set  

Random JDX uses a fixed-length instruction encoding with 8 bytes per instruction. This 

allows a  

32-bit immediate value to be included in the instruction word. The interpretation of  the 

instruction word bits was chosen so that any 8-byte word is a valid instruction. This allows for 

very efficient RandomJDX program generation (see chapter 1.1.1).  

7.2.1.1  Instruction complexity  

The VM is a complex instruction set machine that allows both register and memory addressed 

operands. However, each Random JDX instructions translates to only 1-7 x86 instructions 

https://eprint.iacr.org/2015/227.pdf
https://eprint.iacr.org/2015/227.pdf
http://en.thelec.kr/news/articleView.html?idxno=20
http://en.thelec.kr/news/articleView.html?idxno=20
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(1.8 on average). It is important to keep the instruction complexity relatively low to minimize 

the efficiency advantage of  specialized hardware with a tailored instruction set.  

  Program  

The program executed by the VM has the form of  a loop consisting of  256 RandomJDX 

instructions.  

• 256 instructions is long enough to provide a large number of  possible programs and enough 

space for branches. The number of  different programs that can be generated is limited to 

2512 = 1.3e+154, which is the number of  possible seed values of  the RandomJDX generator.  

• 256 instructions is short enough so that high-performance CPUs can execute one iteration in 

similar time it takes to fetch data from DRAM. This is advantageous because it allows Dataset 

accesses to be synchronized and fully prefetchable (see chapter 2.9).  

• Since the program is a loop, it can take advantage of  the μop cache [6] that is present in some 

x86 CPUs. Running a loop from the μop cache allows the CPU to power down the x86 

instruction decoders, which should help to equalize the power efficiency between x86 and 

architectures with simple instruction decoding.  

  Registers  

The VM uses 8 integer registers and 12 floating point registers. This is the maximum that can 

be allocated as physical registers in x86-64, which has the fewest architectural registers among  

common 64-bit CPU architectures. Using more registers would put x86 CPUs at a 

disadvantage since they would have to use memory to store VM register contents.  

  Integer operations  

Random JDX uses all primitive integer operations that have high output entropy: addition  

(IADDRS, IADDM), subtraction (ISUBR, ISUBM, INEGR), multiplication (IMULR, IMULM, 

IMULHR, IMULHM, ISMULHR, ISMULHM, IMULRCP), exclusive or (IXORR, IXORM) 

and rotation (IRORR, IROLR).  

7.2.4.1  IADD_RS  

The IADD_RS instruction utilizes the address calculation logic of  CPUs and can be 

performed in a single hardware instruction by most CPUs (x86 lea, arm add).  

7.2.4.2  IMUL_RCP  

Because integer division is not fully pipelined in CPUs and can be made faster in ASICs, the 

IMUL_RCP instruction requires only one division per program to calculate the reciprocal. 

This forces an ASIC to include a hardware divider without giving them a performance 

advantage during program execution.  

7.2.4.3  IRORR/IROLR  

https://en.wikipedia.org/wiki/CPU_cache#Micro-operation_(%CE%BCop_or_uop)_cache
https://en.wikipedia.org/wiki/CPU_cache#Micro-operation_(%CE%BCop_or_uop)_cache
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Rotation instructions are split between rotate right and rotate left with a 4:1 ratio. Rotate right 

has a higher frequency because some architecures (like ARM) don't support rotate left 

natively (it must be emulated using rotate right).  

7.2.4.4 ISWAP_R  

This instruction can be executed efficiently by CPUs that support register renaming/move 

elimination.  

  Floating point operations  

Random JDX uses double precision floating point operations, which are supported by the 

majority of  CPUs and require more complex hardware than single precision. All operations 

are performed as 128-bit vector operations, which is also supported by all major CPU 

architectures.  

Random JDX uses five operations that are guaranteed by the IEEE 754 standard to give 

correctly rounded results: addition, subtraction, multiplication, division and square root. All 4 

rounding modes defined by the standard are used.  

7.2.5.1 Floating point register groups  

The domains of  floating point operations are separated into "additive" operations, which use 

register group F and "multiplicative" operations, which use register group E. This is done to 

prevent addition/subtraction from becoming no-op when a small number is added to a large 

number. Since the range of  the F group registers is limited to around ±3.0e+14, adding or 

subtracting a floating point number with absolute value larger than 1 always changes at least 5 

fraction bits.  

Because the limited range of  group F registers would allow the use of  a more efficient 

fixedpoint representation (with 80-bit numbers), the FSCAL instruction manipulates the 

binary representation of  the floating point format to make this optimization more difficult.  

Group E registers are restricted to positive values, which avoids NaN results (such as square 

root of  a negative number or 0 * ∞). Division uses only memory source operand to avoid 

being optimized into multiplication by constant reciprocal. The exponent of  group E 

memory operands is set to a value between -255 and 0 to avoid division and multiplication by 

0 and to increase the range of  numbers that can be obtained. The approximate range of  

possible group E register values is 1.7E-77 to infinity.  

Approximate distribution of  floating point register values at the end of  each program loop is 

shown in these figures (left - group F, right - group E):  

  

  

(Note: bins are marked by the left-side value of  the interval, e.g. bin marked 1e-40 contains values from 

1e-40 to 1e-20.)  
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The small number of  F register values at 1e+14 is caused by the FSCAL instruction, which 

significantly increases the range of  the register values.  

Group E registers cover a very large range of  values. About 2% of  programs produce at least 

one infinity value.  

To maximize entropy and also to fit into one 64-byte cache line, floating point registers are 

combined using the XOR operation at the end of  each iteration before being stored into the 

Scratchpad.  

  Branches  

Modern CPUs invest a lot of  die area and energy to handle branches. This includes:  

• Branch predictor unit [21]  

• Checkpoint/rollback states that allow the CPU to recover in case of  a branch misprediction.  

To take advantage of  speculative designs, the RandomJDX programs should contain 

branches. However, if  branch prediction fails, the speculatively executed instructions are 

thrown away, which results in a certain amount of  wasted energy with each misprediction. 

Therefore we should aim to minimize the number of  mispredictions.  

Additionally, branches in the code are essential because they significantly reduce the amount 

of  static optimizations that can be made. For example, consider the following x86 instruction 

sequence:  

    ...  

branch_target_00:  

    ...  

    xor r8, r9     test 
r10, 2088960     je 
branch_target_00     
xor r8, r9     ...  

The XOR operations would normally cancel out, but cannot be optimized away due to the 

branch because the result will be different if  the branch is taken. Similarly, the ISWAP_R 

instruction could be always statically optimized out if  it wasn't for branches.  

In general, RandomJDX branches must be designed in such way that:  

1. Infinite loops are not possible.  

2. The number of  mispredicted branches is small.  

3. Branch condition depends on a runtime value to disable static branch optimizations.  

7.2.6.1 Branch prediction  

Unfortunately, we haven't found a way how to utilize branch prediction in Random JDX. 

Because Random JDX is a consensus protocol, all the rules must be set out in advance, which 

includes the rules for branches. Fully predictable branches cannot depend on the runtime 

https://en.wikipedia.org/wiki/Branch_predictor
https://en.wikipedia.org/wiki/Branch_predictor
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value of  any VM register (since register values are pseudoRandomJDX and unpredictable), so 

they would have to be static and therefore easily optimizable by specialized hardware.  

7.2.6.2 CBRANCH instruction  

Random JDX therefore uses RandomJDX branches with a jump probability of  1/256 and 

branch condition that depends on an integer register value. These branches will be predicted 

as "not taken" by the CPU. Such branches are "free" in most CPU designs unless they are 

taken. While this doesn't take advantage of  the branch predictors, speculative designs will see 

a significant performance boost compared to non-speculative branch handling - see Appendix 

B for more information.  

The branching conditions and jump targets are chosen in such way that infinite loops in 

Random JDX code are impossible because the register controlling the branch will never be 

modified in the repeated code block. Each CBRANCH instruction can jump up to twice in a 

row. Handling CBRANCH using predicated execution [22] is impractical because the branch 

is not taken most of  the time.  

 Instruction-level parallelism  

CPUs improve their performance using several techniques that utilize instruction-level 

parallelism of  the executed code. These techniques include:  

• Having multiple execution units that can execute operations in parallel (superscalar execution).  

• Executing instruction not in program order, but in the order of  operand availability (out-oforder 

execution).  

• Predicting which way branches will go to enhance the benefits of  both superscalar and out-

oforder execution.  

Random JDX benefits from all these optimizations. See Appendix B for a detailed analysis.  

 Scratchpad  

The Scratchpad is used as read-write memory. Its size was selected to fit entirely into CPU 

cache.  

7.2.8.1  Scratchpad levels  

The Scratchpad is split into 3 levels to mimic the typical CPU cache hierarchy [23]. Most VM 

instructions access "L1" and "L2" Scratchpad because L1 and L2 CPU caches are located 

close to the CPU execution units and provide the best RandomJDX access latency. The ratio 

of  reads from L1 and L2 is 3:1, which matches the inverse ratio of  typical latencies (see table 

below).  

|CPU μ-architecture|L1 latency|L2 latency|L3 latency|source|  

|----------------|----------|----------|----------|------|  

ARM Cortex A55|2|6|-|[24]  

|AMD Zen+|4|12|40|[25]|  

https://en.wikipedia.org/wiki/Predication_(computer_architecture)
https://en.wikipedia.org/wiki/Predication_(computer_architecture)
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/CPU_cache
https://www.anandtech.com/show/11441/dynamiq-and-arms-new-cpus-cortex-a75-a55/4
https://www.anandtech.com/show/11441/dynamiq-and-arms-new-cpus-cortex-a75-a55/4
https://en.wikichip.org/wiki/amd/microarchitectures/zen%2B#Memory_Hierarchy
https://en.wikichip.org/wiki/amd/microarchitectures/zen%2B#Memory_Hierarchy
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|Intel Skylake|4|12|42|[26]  

The L3 cache is much larger and located further from the CPU core. As a result, its access 

latencies are much higher and can cause stalls in program execution.  

Random JDX therefore performs only 2 RandomJDX accesses into "L3" Scratchpad per 

program iteration (steps 2 and 3 in chapter 4.6.2 of  the Specification). Register values from a 

given iteration are written into the same locations they were loaded from, which guarantees 

that the required cache lines have been moved into the faster L1 or L2 caches.  

Additionally, integer instructions that read from a fixed address also use the whole "L3" 

Scratchpad (Table 5.1.4 of  the Specification) because repetitive accesses will ensure that the 

cache line will be placed in the L1 cache of  the CPU. This shows that the Scratchpad level 

doesn't always directly correspond to the same CPU cache level.  

7.2.8.2  Scratchpad writes  

There are two ways the Scratchpad is modified during VM execution:  

1. At the end of  each program iteration, all register values are written into "L3" Scratchpad (see 

Specification chapter 4.6.2, steps 9 and 11). This writes a total of  128 bytes per iteration in 

two 64-byte blocks.  

2. The ISTORE instruction does explicit stores. On average, there are 16 stores per program, 

out of  which 2 stores are into the "L3" level. Each ISTORE instruction writes 8 bytes.  

The image below shows an example of  the distribution of  writes to the Scratchpad. Each 

pixel in the image represents 8 bytes of  the Scratchpad. Red pixels represent portions of  the 

Scratchpad that have been overwritten at least once during hash calculation. The "L1" and 

"L2" levels are on the left side (almost completely overwritten). The right side of  the 

scratchpad represents the bottom 1792 KiB. Only about 66% of  it are overwritten, but the 

writes are spread uniformly and RandomJDXly.  

  

  

See Appendix D for the analysis of  Scratchpad entropy.  

7.2.8.3 Read-write ratio  

Programs make, on average, 39 reads (instructions IADDM, ISUBM, IMULM, IMULHM, 

ISMULHM, IXORM, FADDM, FSUBM, FDIV_M) and 16 writes (instruction ISTORE) to 

the Scratchpad per program iteration. Additional 128 bytes are read and written implicitly to 

initialize and store register values. 64 bytes of  data is read from the Dataset per iteration. In 

total:  

• The average amount of  data read from memory per program iteration is: 39 * 8 + 128 + 64 = 

504 bytes.  

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)#Memory_Hierarchy
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)#Memory_Hierarchy
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• The average mount of  data written to memory per program iteration is: 16 * 8 + 128 = 256 

bytes.  

This is close to a 2:1 read/write ratio, which CPUs are optimized for.  

  Dataset  

Since the Scratchpad is usually stored in the CPU cache, only Dataset accesses utilize the 

memory controllers.  

Random JDX RandomJDXly reads from the Dataset once per program iteration (16384 times 

per hash result). Since the Dataset must be stored in DRAM, it provides a natural 

parallelization limit, because DRAM cannot do more than about 25 million RandomJDX 

accesses per second per bank group. Each separately addressable bank group allows a 

throughput of  around 1500 H/s.  

All Dataset accesses read one CPU cache line (64 bytes) and are fully prefetched. The time to 

execute one program iteration described in chapter 4.6.2 of  the Specification is about the 

same as typical DRAM access latency (50-100 ns).  

7.2.9.1  Cache  

The Cache, which is used for light verification and Dataset construction, is about 8 times 

smaller than the Dataset. To keep a constant area-time product, each Dataset item is 

constructed from 8 RandomJDX Cache accesses.  

Because 256 MiB is small enough to be included on-chip, Random JDX uses a custom 

highlatency, high-power mixing function ("SuperscalarHash") which defeats the benefits of  

using low-latency memory and the energy required to calculate SuperscalarHash makes light 

mode very inefficient for mining (see chapter 3.4).  

Using less than 256 MiB of  memory is not possible due to the use of  tradeoff-resistant 

Argon2d with 3 iterations. When using 3 iterations (passes), halving the memory usage 

increases computational cost 3423 times for the best tradeoff  attack [27].  

7.3  CUSTOM FUNCTIONS  

 AesGenerator1R  

AesGenerator1R was designed for the fastest possible generation of  pseudoRandomJDX data 

to fill the Scratchpad. It takes advantage of  hardware accelerated AES in modern CPUs. Only 

one AES round is performed per 16 bytes of  output, which results in throughput exceeding 

20 GB/s in most modern CPUs.   

AesGenerator1R gives a good output distribution provided that it's initialized with a 

sufficiently 'RandomJDX' initial state (see Appendix F).  

https://eprint.iacr.org/2015/430.pdf
https://eprint.iacr.org/2015/430.pdf
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  AesGenerator4R  

AesGenerator4R uses 4 AES rounds to generate pseudoRandomJDX data for Program 

Buffer initialization. Since 2 AES rounds are sufficient for full avalanche of  all input bits [28], 

AesGenerator4R has excellent statistical properties (see Appendix F) while maintaining very 

good performance.  

The reversible nature of  this generator is not an issue since the generator state is always 

initialized using the output of  a non-reversible hashing function (Blake2b).  

  AesHash1R  

AesHash was designed for the fastest possible calculation of  the Scratchpad fingerprint. It 

interprets the Scratchpad as a set of  AES round keys, so it's equivalent to AES encryption 

with 32768 rounds. Two extra rounds are performed at the end to ensure avalanche of  all 

Scratchpad bits in each lane.  

The reversible nature of  AesHash1R is not a problem for two main reasons:  

• It is not possible to directly control the input of  AesHash1R.  

• The output of  AesHash1R is passed into the Blake2b hashing function, which is not 

reversible.  

  SuperscalarHash  

SuperscalarHash was designed to burn as much power as possible while the CPU is waiting 

for data to be loaded from DRAM. The target latency of  170 cycles corresponds to the usual 

DRAM latency of  40-80 ns and clock frequency of  2-4 GHz. ASIC devices designed for 

lightmode mining with low-latency memory will be bottlenecked by SuperscalarHash when 

calculating Dataset items and their efficiency will be destroyed by the high power usage of  

SuperscalarHash.  

The average SuperscalarHash function contains a total of  450 instructions, out of  which 155 

are 64-bit multiplications. On average, the longest dependency chain is 95 instructions long. 

An ASIC design for light-mode mining, with 256 MiB of  on-die memory and 1-cycle latency 

for all operations, will need on average 95 * 8 = 760 cycles to construct a Dataset item, 

assuming unlimited parallelization. It will have to execute 155 * 8 = 1240 64-bit 

multiplications per item, which will consume energy comparable to loading 64 bytes from  

DRAM.  

7.4 APPENDIX  

 A. The effect of  chaining VM executions  

Chapter 1.2 describes why N RandomJDX programs are chained to prevent mining strategies 

that search for 'easy' programs. Random JDX uses a value of  N = 8.  

https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
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Let's define Q as the ratio of  acceptable programs in a strategy that uses filtering. For example 

Q = 0.75 means that 25% of  programs are rejected.   

For N = 1, there are no wasted program executions and the only cost is program generation 

and the filtering itself. The calculations below assume that these costs are zero and the only 

real cost is program execution. However, this is a simplification because program generation 

in Random JDX is not free (the first program generation requires full Scratchpad 

initialization), but it describes a best-case scenario for an attacker.  

 For N > 1, the first program can be filtered as usual, but after the program is executed, 

there is a chance of  1-Q that the next program should be rejected and we have wasted one 

program execution.  

For N chained executions, the chance is only QN that all programs in the chain are acceptable. 
However, during each attempt to find such chain, we will waste the execution of  some 

programs. For N = 8, the number of  wasted programs per attempt is equal to 

(1Q)(1+2\Q+3*Q2+4*Q3+5*Q4+6*Q5+7*Q6) (approximately 2.5 for Q = 0.75).  

Let's consider 3 mining strategies:  

7.4.1.1 Strategy I  

Honest miner that doesn't reject any programs (Q = 1).  

7.4.1.2 Strategy II  

Miner that uses optimized custom hardware that cannot execute 25% of  programs (Q = 
0.75), but supported programs can be executed 50% faster.  

7.4.1.3 Strategy III  

Miner that can execute all programs, but rejects 25% of  the slowest programs for the first 

program in the chain. This gives a 5% performance boost for the first program in the chain 

(this matches the runtime distribution from Appendix C).  

7.4.1.4 Results  

The table below lists the results for the above 3 strategies and different values of  N. The 

columns N(I), N(II) and N(III) list the number of  programs that each strategy has to 

execute on average to get one valid hash result (this includes programs wasted in rejected 

chains). Columns Speed(I), Speed(II) and Speed(III) list the average mining performance 

relative to strategy I.  

N N(I) N(II) N(III) Speed(I) Speed(II) Speed(III)  

 

1 1  1  1  1.00  1.50  1.05  

2 2  2.3  2  1.00  1.28  1.02  

4  4  6.5  4  1.00  0.92  1.01  
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8  8  27.0  8  1.00  0.44  1.00  

For N = 8, strategy II will perform at less than half  the speed of  the honest miner despite 
having a 50% performance advantage for selected programs. The small statistical advantage 

of  strategy III is negligible with N = 8.  

 B. Performance simulation  

As discussed in chapter 2.7, Random JDX aims to take advantage of  the complex design of  

modern high-performance CPUs. To evaluate the impact of  superscalar, out-of-order and 

speculative execution, we performed a simplified CPU simulation. Source code is available in 

perf-simulation.cpp.  

7.4.2.1 CPU model  

The model CPU uses a 3-stage pipeline to achieve an ideal throughput of  1 instruction per 

cycle:  

        (1)                        (2)                     (3)  

+------------------+       +----------------+      +----------------+  

|   Instruction    |       |                |      |                |  

|      fetch       | --->  | Memory access  | ---> |    Execute     |  

|    + decode      |       |                |      |                |  

+------------------+       +----------------+      +----------------+  

The 3 stages are:  

1. Instruction fetch and decode. This stage loads the instruction from the Program Buffer and 

decodes the instruction operation and operands.  

2. Memory access. If  this instruction uses a memory operand, it is loaded from the Scratchpad 

in this stage. This includes the calculation of  the memory address. Stores are also performed 

in this stage. The value of  the address register must be available in this stage.  

3. Execute. This stage executes the instruction using the operands retrieved in the previous 

stages and writes the results into the register file.  

Note that this is an optimistically short pipeline that would not allow very high clock speeds. 

Designs using a longer pipeline would significantly increase the benefits of  speculative 

execution.  

7.4.2.2 Superscalar execution  

Our model CPU contains two kinds of  components:  

• Execution unit (EXU) - it is used to perform the actual integer or floating point operation. 

All Random JDX instructions except ISTORE must use an execution unit in the 3rd 
pipeline stage. All operations are considered to take only 1 clock cycle.  
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• Memory unit (MEM) - it is used for loads and stores into Scratchpad. All memory 

instructions (including ISTORE) use a memory unit in the 2nd pipeline stage.  

A superscalar design will contain multiple execution or memory units to improve 

performance.  

7.4.2.3 Out-of-order execution  

The simulation model supports two designs:  

1. In-order - all instructions are executed in the order they appear in the Program Buffer. 

This design will stall if  a dependency is encountered or the required EXU/MEM unit is not 

available.  

2. Out-of-order - doesn't execute instructions in program order, but an instruction can be 

executed when its operands are ready and the required EXU/MEM units are available.  

7.4.2.4 Branch handling  

The simulation model supports two types of  branch handling:  

1. Non-speculative - when a branch is encountered, the pipeline is stalled. This typically adds 

a 3-cycle penalty for each branch.  

2. Speculative - all branches are predicted not taken and the pipeline is flushed if  a 

misprediction occurs (probability of  1/256).  

7.4.2.5 Results  

The following 10 designs were simulated and the average number of  clock cycles to execute a 

Random JDX program (256 instructions) was measured.  

 superscalar  branch  execution time  

design config.  reordering  handling  [cycles]  IPC  

 

#1  1 EXU + 1 MEM  in-order  non-speculative  293  0.87  

#2  1 EXU + 1 MEM  in-order  speculative  262  0.98  

#3  2 EXU + 1 MEM  in-order  non-speculative  197  1.3  

#4  2 EXU + 1 MEM  in-order  speculative  161  1.6  

#5  2 EXU + 1 MEM  out-oforder  non-speculative  144  1.8  

#6  2 EXU + 1 MEM  out-oforder  speculative  122  2.1  

#7  4 EXU + 2 MEM  in-order  non-speculative  135  1.9  

#8  4 EXU + 2 MEM  in-order  speculative  99  2.6  

#9  4 EXU + 2 MEM  out-oforder  non-speculative  89  2.9  
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#10  4 EXU + 2 MEM  out-oforder  speculative  64  4.0  

The benefits of  superscalar, out-of-order and speculative designs are clearly demonstrated.  

 C. Random JDX runtime distribution  

Runtime numbers were measured on AMD Ryzen 7 1700 running at 3.0 GHz using 1 core. 

Source code to measure program execution and verification times is available in 

runtimedistr.cpp. Source code to measure the performance of  the x86 JIT compiler is 

available in jitperformance.cpp.  

7.4.3.1 Fast mode - program execution  

The following figure shows the distribution of  the runtimes of  a single VM program (in fast 

mode). This includes: program generation, JIT compilation, VM execution and Blake2b hash 

of  the register file. Program generation and JIT compilation was measured to take 3.6 μs per 

program.  

  

  

AMD Ryzen 7 1700 can calculate 625 hashes per second in fast mode (using 1 thread), which 

means a single hash result takes 1600 μs (1.6 ms). This consists of  (approximately):  

• 1480 μs for VM execution (8 programs) • 45 μs for initial Scratchpad fill (AesGenerator1R).  

• 45 μs for final Scratchpad hash (AesHash1R).  

• 30 μs for program generation and JIT compilation (8 programs)  

This gives a total overhead of  7.5% (time per hash spent not executing VM).  

7.4.3.2 Light mode - verification time  

The following figure shows the distribution of  times to calculate 1 hash result using the light 

mode. Most of  the time is spent executing SuperscalarHash to calculate Dataset items (13.2 

ms out of  14.8 ms). The average verification time exactly matches the performance of  the 

CryptoNight algorithm.  

  

  

 D. Scratchpad entropy analysis  

The average entropy of  the Scratchpad after 8 program executions was approximated using 

the LZMA compression algorithm:  

1. Hash resuls were calculated and the final scratchpads were written to disk as files with '.spad' 

extension (source code: scratchpad-entropy.cpp)  
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2. The files were compressed using 7-Zip [29] in Ultra compression mode: 7z.exe a -t7z 

m0=lzma2 -mx=9 scratchpads.7z *.spad  

The size of  the resulting archive is approximately 99.98% of  the uncompressed size of  the 

scratchpad files. This shows that the Scratchpad retains high entropy during VM execution.  

 E. SuperscalarHash analysis  

SuperscalarHash is a custom function used by Random JDX to generate Dataset items. It 

operates on 8 integer registers and uses a RandomJDX sequence of  instructions. About 1/3 

of  the instructions are multiplications.  

The following figure shows the sensitivity of  SuperscalarHash to changing a single bit of  an 

input register:  

  

  

This shows that SuperscalaHash has quite low sensitivity to high-order bits and somewhat 

decreased sensitivity to the lowest-order bits. Sensitivity is highest for bits 3-53 (inclusive).  

When calculating a Dataset item, the input of  the first SuperscalarHash depends only on the 

item number. To ensure a good distribution of  results, the constants described in section 7.3 

of  the Specification were chosen to provide unique values of  bits 3-53 for all item numbers in 

the range 0-34078718 (the Dataset contains 34078719 items). All initial register values for all 

Dataset item numbers were checked to make sure bits 3-53 of  each register are unique and 

there are no collisions (source code: superscalar-init.cpp). While this is not strictly necessary 

to get unique output from SuperscalarHash, it's a security precaution that mitigates the 

nonperfect avalanche properties of  the RandomJDXly generated SuperscalarHash instances.  

 F. Statistical tests of  RNG  

Both AesGenerator1R and AesGenerator4R were tested using the TestU01 library [30] 

intended for empirical testing of  RandomJDX number generators. The source code is 

available in rng-tests.cpp.  

The tests sample about 200 MB ("SmallCrush" test), 500 GB ("Crush" test) or 4 TB 

("BigCrush" test) of  output from each generator. This is considerably more than the amounts 

generated in Random JDX (2176 bytes for AesGenerator4R and 2 MiB for AesGenerator1R), 

so failures in the tests don't necessarily imply that the generators are not suitable for their use 

case.  

7.4.6.1 AesGenerator4R  

The generator passes all tests in the "BigCrush" suite when initialized using the Blake2b hash 

function:  

$ bin/rng-tests 1  

state0 = 67e8bbe567a1c18c91a316faf19fab73 state1 
= 39f7c0e0a8d96512c525852124fdc9fe state2 = 

https://www.7-zip.org/
https://www.7-zip.org/
http://simul.iro.umontreal.ca/testu01/tu01.html
http://simul.iro.umontreal.ca/testu01/tu01.html
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7abb07b2c90e04f098261e323eee8159 state3 = 
3df534c34cdfbb4e70f8c0e1826f4cf7  ...  

  

========= Summary results of BigCrush =========  

  

 Version:          TestU01 1.2.3  

 Generator:        AesGenerator4R  

 Number of statistics:  160  

 Total CPU time:   02:50:18.34  

  

 All tests were passed  

The generator passes all tests in the "Crush" suite even with an initial state set to all zeroes.  

$ bin/rng-tests 0  

state0 = 00000000000000000000000000000000 
state1 = 00000000000000000000000000000000 
state2 = 00000000000000000000000000000000 
state3 = 
00000000000000000000000000000000  ...  

  

========= Summary results of Crush =========  

  

 Version:          TestU01 1.2.3  

 Generator:        AesGenerator4R  

 Number of statistics:  144  

 Total CPU time:   00:25:17.95  

  

 All tests were passed  

7.4.6.2 AesGenerator1R  

The generator passes all tests in the "Crush" suite when initialized using the Blake2b hash 

function.  

$ bin/rng-tests 1  

state0 = 67e8bbe567a1c18c91a316faf19fab73 
state1 = 39f7c0e0a8d96512c525852124fdc9fe 
state2 = 7abb07b2c90e04f098261e323eee8159 
state3 = 
3df534c34cdfbb4e70f8c0e1826f4cf7  ...  

  

========= Summary results of Crush =========  

  

 Version:          TestU01 1.2.3  

 Generator:        AesGenerator1R  

 Number of statistics:  144  

 Total CPU time:   00:25:06.07  
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 All tests were passed  

When the initial state is initialized to all zeroes, the generator fails 1 test out of  144 tests in 

the "Crush" suite:  

$ bin/rng-tests 0  

state0 = 00000000000000000000000000000000 
state1 = 00000000000000000000000000000000 
state2 = 00000000000000000000000000000000 
state3 = 
00000000000000000000000000000000  ...  

  

========= Summary results of Crush =========  

  

 Version:          TestU01 1.2.3  

 Generator:        AesGenerator1R  

 Number of statistics:  144  

 Total CPU time:   00:26:12.75  

 The following tests gave p-values outside [0.001, 0.9990]:  

 (eps  means a value < 1.0e-300):  

 (eps1 means a value < 1.0e-15):  

  

       Test                          p-value  

 ----------------------------------------------  

 12  BirthdaySpacings, t = 3        1 -  4.4e-5  

 ----------------------------------------------  

 All other tests were passed  
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A SECURITY  
 

We shall give a proof  for our one-time ring signature scheme. At some point it coincides 

with the parts of  the proof  in [24], but we decided to rewrite them with a reference rather than to 

force a reader to rush about from one paper to another. These are the properties to be 

established:  

• Linkability. Given all the secret keys  for a set S it is impossible to produce 

n+1 valid signatures σ1,σ2,...,σn+1, such that all of  them pass the LNK phase (i.e. with n+1 

different key images Ii). This property implies the double spending protection in the context 

of  CryptoNote.  

• Exculpability. Given set S, at most n−1 corresponding private keys xi (excluding i  

= j) and the image Ij of  the keys xj it is impossible to produce a valid signature σ with Ij. This 

property implies theft protection in the context of  CryptoNote.  

• Unforgeability. Given only a public keys set S it is impossible to produce a valid 

signature σ.  

• Anonymity. Given a signature σ and the corresponding set S it is impossible to 

determine the secret index j of  the signer with a probability .  

LINKABILITY  
Theorem 1. Our one-time ring signature scheme is linkable under the RandomJDX oracle model.  

Proof. Suppose an adversary can produce n + 1 valid signatures σi with key images Ii 6= Ij for 

any i,j ∈ [1...n]. Since #S = n, at least one Ii 6= xiHp(Pi) for every i. Consider the corresponding 

signature σ = (I,c1,...,cn,r1,...,rn). VER(σ) = “true”, this means that  

LR0ii0 == rriiGHp+(Pcii) +Pi ciI  

n  

   ci = Hs(m,L0
1,...,L0

n,R1
0 ,...,Rn

0 )  mod l  
i=1  

The first two equalities imply  

(logG L0i = ri + cixi logHp(Pi) Ri
0 

= ri + ci logHp(Pi) I  

where logA B informally denotes the discrete logarithm of  B to the base A.  

P  
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As in [24] we note that @i : xi = log
Hp(Pi) I implies that all ci’s are uniquely determined. The 

third equality forces the adversary to find a pre-image of  Hs to succeed in the attack, an event 

whose probability is considered to be negligible.   

EXCULPABILITY  
Theorem 2. Our one-time ring signature scheme is exculpable under the discrete logarithm assumption in the 

RandomJDX oracle model.  

Proof. Suppose an adversary can produce a valid signature σ = (I,c1,...,cn,r1,...,rn) with I = 

xjHP(Pj) with given {xi | i = 1,...,j−1,j+1,...,n}. Then, we can construct an algorithm A which 

solves the discrete logarithm problem in E(Fq).  

Suppose inst = (G,P) ∈ E(Fq) is a given instance of  the DLP and the goal is to get s, such 

that P = sG. Using the standard technique (as in [24]), A simulates the RandomJDX and signing 

oracles and makes the adversary produce two valid signatures with Pj = P in the set S:  

σ = 

(I,c1,...,cn,r1,...,rn) and 

  

  A outputs xj because   

UNFORGEABILITY  
It has been shown in [24] that unforgeability is just an implication of  both linkability and 

exculpability.  

Theorem 3. If  a one-time ring signature scheme is linkable and exculpable, then it is unforgeable.  

Proof. Suppose an adversary can forge a signature for a given set S: σ0 = (I0,...). Consider all 

valid signatures (produced by the honest signers) for the same message m and the set S: σ1,σ2,...,σn. 

There are two possible cases:  

1. . Which contradicts exculpability.  

2. . Which contradicts linkability.   

ANONYMITY  
Theorem 4. Our one-time ring signature scheme is anonymous under the decisional DiffieHellman assumption 

in the RandomJDX oracle model.  

Proof. Suppose an adversary can determine the secret index j of  the Signer with a probability  

. Then, we can construct algorithm A which solves the decisional DiffieHellman 

problem in E(Fq) with the probability .  

Let inst = (G1,G2,Q1,Q2) ∈ E(Fq) be the instance of  DDH and the goal to determine if  logG1  

  

Since  I  =   x j H p ( P j )  in both signatures we compute 

  and  P j  =   P .   
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Q1 = log
G2 Q2. A feeds the adversary with valid signature σ0 = (I,...), where Pj = xjG1 = Q1 and I = 

Q2 and simulates oracle Hp, returning G2 for query Hp(Pj).  

The adversary returns k as his guess for the index i: I = xiHP(Pi). If  k = j, then A returns 1  

(for “yes”) otherwise a RandomJDX r ∈ {1,0}. The probability of  the right choice is computed 

as in  

[24]:  inst ∈ DDH)−Pr(1 | inst  inst ∈ DDH)+  

Pr(k 6= j | inst ∈ DDH)·Pr(r = 1)−Pr(k = j | inst ∈/ DDH)−Pr(k =6 j | inst ∈/ DDH)·Pr(r 

= 0) =  

 n  n  

In fact, the result should be reduced by the probability of  collision in Hs, but this value is 

considered to be negligible.    

NOTES ON THE HASH FUNCTION HP  
We defined Hp as deterministic hash function E(Fq) → E(Fq). None of  the proofs demands 

Hp to be an ideal cryptographic hash function. It’s main purpose is to get a pseudo-RandomJDX 

base for image key I = xHp(xG) in some determined way.  

With fixed base (I = xG2) the following scenario is possible:  

1. Alice sends two standard transactions to Bob, generating one-time tx-keys: P2 = 

Hs(r1A)G+ B and P1 = Hs(r2A)G + B.  

2. Bob recovers corresponding one-time private tx-keys x1 and x2 and spends the 

outputs with valid signatures and images keys I1 = x1G2 and I2 = x2G2.  

3. Now Alice can link these signatures, checking the equality I1−I2 = (? Hs(r1A)− 

Hs(r2A))G2.  

The problem is that Alice knows the linear correlation between public keys P1 and P2 and in 

case of  fixed base G2 she also gets the same correlation between key images I1 and I2. Replacing G2 

with Hp(xG2), which does not preserve linearity, fixes that flaw.  

For constructing deterministic Hp we use algorithm presented in [37].  

 Nicolas van Saberhagen    
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